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We compare the different existing strategies of mutual nonlinear prediction regarding their ability to assess
the coupling strength and directionality of the interactions in bivariate time series. Under the common frame-
work of k-nearest neighbor local linear prediction, we test three approaches based on cross prediction, mixed
prediction, and predictability improvement. The measures of interdependence provided by these approaches are
first evaluated on short realizations of bivariate time series generated by coupled Henon models, investigating
also the effects of noise. The usefulness of the three mutual nonlinear prediction schemes is then assessed in a
common physiological application during known conditions of interaction—i.e., the analysis of the interde-
pendence between heart rate and arterial pressure variability in healthy humans during supine resting and
passive head-up tilting. Based on both simulation results and physiological interpretability of cardiovascular
results, we conclude that cross prediction is valuable to quantify the coupling strength and predictability
improvement to elicit directionality of the interactions in short and noisy bivariate time series.
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I. INTRODUCTION

In past decades, the detection and characterization of the
interdependence among dynamical systems has gained in-
creasing importance and has found relevant applications in
many physical fields. As an example, the study of the cou-
pling between simultaneously collected physiological signals
has been widely used to investigate interactions within neu-
rophysiological �1� and cardiovascular �2,3� systems. Re-
cently a large variety of methods—e.g., based on concepts
from information theory �4�, phase synchronization �5�, and
state space correspondence �6–8�—have been proposed to
detect interdependences in nonlinear dynamical systems.
Among them, approaches based on mutual nonlinear predic-
tion �9–15� have shown their usefulness in practical applica-
tions thanks to their suitability to deal with real physiological
signals, which are commonly noisy and are stationary only
for short data sequences.

The study of the interdependence between two dynamical
systems X and Y in terms of mutual nonlinear prediction is
based on the rationale that in the presence of coupling the
time series x and y measured from the systems are mutually
predictable, where mutual predictability is defined as the
ability to predict one of the two series based on knowledge
of state vectors including points of the other series. Within
this framework, three approaches which directly exploit mu-
tual nonlinear prediction to evaluate the coupling between
dynamical systems have been proposed in the past: cross
prediction—i.e., the prediction of a time series starting from
the dynamics of the other series in its embedded state
space—was introduced to detect dynamical interdependence
and generalized synchronization in chaotic systems �9�;

mixed prediction—i.e., the prediction of a time series start-
ing from mixed states consisting of samples taken from both
the considered series—was proposed to detect weak cou-
plings below the onset of generalized synchronization �11�;
predictability improvement—i.e., the increase in the predict-
ability degree brought by mixed prediction with respect to
the self-prediction of a single time series—was introduced as
an asymmetrical measure of nonlinear interdependence be-
tween two series �12�. Although they have not been directly
compared yet, these approaches are supposed to show differ-
ent capabilities to detect the coupling between interacting
systems, depending on the nature �e.g., unidirectional or bi-
directional� and on the strength of such coupling.

Another important issue in coupling analysis is the deter-
mination of directionality of the interactions. Although there
has been no universally accepted definition of causality �16�,
it is common belief that the notion of causality between two
events describes to what extent one event is caused by the
other. With implicit reference to this general concept, a large
number of methods have been proposed to infer causality
from the asymmetry of various interdependence measures
�3,4,7,8,17–19�. These methods identified the existence of a
driver-response relationship between two time series x and y
when a stronger dependence was found in one of the two
causal directions �i.e., from x to y and from y to x� according
to the proposed asymmetrical coupling measure. This ap-
proach can be followed also by the three methods performing
mutual nonlinear prediction presented above �9–12�. Indeed,
since the corresponding coupling measures are asymmetrical,
the prevailing coupling direction might be inferred by look-
ing at the difference between the measures obtained after
exchanging the roles of the series x and y during mutual
nonlinear prediction. However, it has been shown that inter-
pretation of causality based on the asymmetry of coupling
measures can be contradictory. For instance, the authors of
�9,10� made opposite claims about the coupling direction us-
ing the same cross-prediction approach on simulated unidi-
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rectionally coupled systems. In fact, previous studies using
observables different from nonlinear predictability �17,20�
demonstrated that inferring directionality from the asymme-
try of coupling measures is often difficult, as it may depend
on differences between the dynamical properties of the two
investigated systems and on the strength of their coupling.

A specific definition of causality between two time series
was that proposed by Wiener �21� and later formalized by
Granger �22�. According to this definition, the series x is
called causal to the series y if we can predict y better using
the past information from x than by using the information
without it. The concept of Granger causality, originally pro-
posed in the context of linear regression models of stochastic
processes �22�, has been recently extended to nonlinear sys-
tems �13,14�. As can be deduced from the definition, this
concept, either approached within a linear or a nonlinear
framework, is intimately related to the mutual prediction of
bivariate time series. Particularly, measures quantifying how
much the prediction of one series is improved by incorporat-
ing points of the other series in the prediction scheme
�12–14� make direct reference to Granger’s approach to the
evaluation of causality.

In the present study we compare the different existing
conceptual approaches proposed to perform mutual nonlinear
prediction of bivariate time series in relation to their ability
to quantify coupling strength and directionality. To this end,
measures of nonlinear interdependence based on cross pre-
diction, mixed prediction, and predictability improvement
are evaluated on simple well-known numerical simulations,
as well as on real data taken from the cardiovascular system.
In order to facilitate the comparison, a common method-
ological framework—i.e., nonlinear prediction based on the
k-nearest-neighbor local linear approximation �23,24�—as
well as a common observable—i.e., the squared correlation
between original and predicted data �25�—are used to apply
the three prediction schemes. To assess the applicability of
the considered nonlinear interdependence measures to real
physiological conditions, simulations are performed on short
bivariate time series, and the effects of noise are also taken
into account. The subsequent application to heart rate and
arterial pressure series measured from healthy humans is
aimed at testing the physiological interpretability of the mea-
sures.

II. METHODS

A. Local approximation approaches to perform mutual
nonlinear prediction

Let the two time series x= �xi , i=1, . . . ,N� and y= �yi , i
=1, . . . ,N� be observable variables simultaneously measured
from two potentially coupled dynamical �sub�systems X and
Y, respectively. Since time series from different systems gen-
erally do not span the same range of values, x and y are first
normalized to zero mean and unit variance. Using the time
delay embedding technique �26�, the two series are then em-
bedded in a mixed state space by constructing state vectors
including m samples of x and n samples of y, zi
= �xi ,xi-l , . . . ,xi-�m−1�l ,yi ,yi-l , . . . ,yi-�n−1�l�, where l is the time
lag. Mutual nonlinear prediction of the two series is per-

formed by assuming functional nonlinear relationships be-
tween the current state zi and the future values xi+l and yi+l:

xi+l = f�zi�, yi+l = g�zi� , �1�

where f and g are estimated by means of a local linear ap-
proximation approach—i.e., by fitting an hyperplane to the k
nearest neighbors of zi in the mixed state space of X and Y
�23�. Specifically, let si,j, j=1, . . . ,k, denote the time indices
of the k Euclidean nearest neighbors of the current state zi.
The neighbors zsi,j

, j=1, . . . ,k, are kept separated from the
current state zi by using a Theiler window of width �m+n�l
samples �27� in order to prevent temporal correlations be-
tween the reference vector and its selected neighbors, as well
as to perform an out-of-sample prediction �15�. Two systems
of k linear equations, each involving the k nearest neighbors,
are then defined as

xsi,j+l = � · zsi,j
, ysi,j+l = � · zsi,j

, j = 1, . . . ,k . �2�

The systems are then solved by least-squares optimization to

yield the estimates �̂ and �̂ of the vector coefficients � and
�, which are finally used to predict the future values of the
two series

x̂i+l = �̂ · zi, ŷi+l = �̂ · zi. �3�

After predicting Nr values, the squared correlation between
the predicted and the original future values of the series x,

�x
2 = ��

i=1

Nr

xi+lx̂i+l	2
�
i=1

Nr

xi+l
2 �

i=1

Nr

x̂i+l
2 , �4�

is taken as a measure of the predictability of the series �25�.
The same holds for the series y, for which the squared cor-
relation is �y

2. These two predictability measures are bounded
between 0 and 1, with 0 indicating full unpredictability and 1
full predictability of the investigated dynamics.

With fixed embedding lag l and number of neighbors, k,
the degrees of predictability of the two series are a function
of the embedding dimensions m and n—that is, �x

2

=�x
2�m ,n� and �y

2=�y
2�m ,n�. In the following we will indicate

with self-embedding dimension the number of samples of a
series used to predict the future of the same series �i.e., m for
the prediction of x and n for the prediction of y� and with
cross-embedding dimension the number of samples of a se-
ries used to predict the future of the other series �i.e., n for
the prediction of x and m for the prediction of y�. Setting to
zero the cross-embedding dimension corresponds to perform
self-prediction, setting to zero the self-embedding dimension
corresponds to perform cross prediction, and letting both m
�0 and n�0 corresponds to perform mixed prediction of a
given time series. With these prediction schemes, three dif-
ferent predictability functions—respectively, quantifying the
self-predictability, cross predictability, and mixed predict-
ability of the two time series—can be defined using the ob-
servable of Eq. �4�:

PSx�m� = �x
2�m,0�, PSy�n� = �y

2�0,n� ,

PCx�n� = �x
2�0,n�, PCy�m� = �y

2�m,0� ,
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PMx�m,n� = �x
2�m,n�, PMy�m,n� = �y

2�m,n�, m,n � 1.

�5�

A convenient way to represent together these predictability
functions is to realize bivariate predictability maps �BPMs�,
which are diagrams reporting the color-coded values of the
observable defined in Eq. �4� as a function of the self- and
cross-embedding dimensions ranging from 0 to a given
maximum �12 in this work�. A representative example is re-
ported in Fig. 1. In each BPM, the self-embedding dimension
varies across the columns and the cross-embedding dimen-
sion across the rows of the map. In this way, the predictabil-
ity yielded by self-prediction �i.e., the function PS� is repre-
sented by the first row of the BPM and the predictability
yielded by cross prediction �i.e., the function PC� is repre-
sented by the first column of the BPM, while the remaining
part of the BPM corresponds to mixed prediction �i.e., to the
function PM�.

In the following sections, mutual nonlinear prediction will
be performed in both numerical simulations and real data
applications. For each pair of bivariate time series, the two
maps indicating the predictability of x and y as a function of
the embedding dimensions �BPMx and BPMy� are evaluated,
and representative measures of nonlinear interdependence
along a predefined temporal direction �i.e., from y to x in the
case of BPMx and the reverse in the case of BPMy� are then
provided according to approaches previously proposed in the
literature.

�i� The cross-prediction approach quantifies interdepen-
dence as the predictability of one of the two series estimated
using state space vectors of the other series �9�:

S1x = max
n

�PCx�n��, S1y = max
m

�PCy�m�� . �6�

�ii� The mixed-prediction approach quantifies interdepen-
dence as the predictability of a series using state vectors that
contain samples of both series �11�:

S2x = max
m,n

�PMx�m,n��, S2y = max
m,n

�PMy�m,n�� . �7�

�iii� The predictability-improvement approach quantifies
interdependence as the increase in predictability yielded by
mixed prediction compared to self-prediction �12�:

S3x = max
m,n

�PMx�m,n�� − max
m

�PSx�m��,

S3y = max
m,n

�PMy�m,n�� − max
n

�PSy�n�� . �8�

In addition to the directional measures of Eqs. �6�–�8�, we
define nondirectional interdependence measures by taking
the maximum of the two directional coupling values for the
considered bivariate time series—i.e., S1=max�S1x ,S1y�, S2
=max�S2x ,S2y�, and S3=max�S3x ,S3y�—defined as a measure
of synchronization in �28�. While the nondirectional mea-
sures are used to quantify the coupling strength, asymmetries
between the two directional measures are exploited to infer
driver-response relationships �i.e., the coupling direction�.

The indices S1, S2, and S3 refer, respectively, to cross
prediction, mixed prediction, and predictability improve-
ment. Since calculation of the index S3 as originally pro-
posed by �12� directly involves self-prediction �see Eq. �8��,
the predictability of the single time series may affect the
corresponding coupling measure. To circumvent this prob-
lem, some authors have proposed to normalize the predict-
ability improvement to the self-unpredictability of the time
series under investigation �14�. According to this modifica-
tion, we also compute the normalized predictability improve-
ment as

S3Nx =
S3x

1 − max
m

�PSx�m��
, S3Ny =

S3y

1 − max
n

�PSy�n��
, �9�

and calculate the corresponding nondirectional measure of
coupling as S3N=max�S3Nx ,S3Ny� �28�.

B. Surrogate data approach

We used the method of surrogate data �29� to test the
hypothesis that the two considered time series are uncoupled.
In this work, we used time-shifted signals as realizations of
surrogate time series and compared predictability at short
lags �l samples� with predictability at randomly selected long
lags ��20l samples�. Time-shifted bivariate surrogate data
were generated by leaving unchanged the time series that had
to be predicted, while shifting over time the other time series
and wrapping the extra values around the beginning of the
series. One hundred shift lags were chosen randomly with
the restriction that shifts be larger than 20l samples. The
threshold for significance of the coupling was set at the up-
per 95th percentile of the distribution of the coupling index
calculated for the surrogate pairs. With respect to traditional
surrogates based on phase randomization of the Fourier
transform �30�, time-shifted surrogates preserve the whole

FIG. 1. �Color online� Representative examples of bivariate pre-
dictability maps �BPMs� obtained for unidirectionally coupled non-
identical Henon maps ��a� Eq. �10� with c=0.6�, bidirectionally
coupled nonidentical Henon maps ��b� Eq. �11� with c1=0.2 and
c2=0.05�, and uncoupled nonidentical Henon maps ��c� Eq. �10�
with c=0�. The maps depict color-coded values of the squared cor-
relation between original series and series predicted from mixed
states with m samples of x and n samples of y.
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statistical structure of both original time series, blunting the
short lag correlations in the original data. Hence, they are
indicated to test the significance of the asymmetry of direc-
tional measures of coupling �8,31�. The use of surrogates
maintaining the intrinsic dimensionality of the original series
allows us indeed to reject the hypothesis of differences in
complexity as the prime reason explaining any reported cou-
pling asymmetry. This aspect is particularly relevant when
dealing with nonlinear interdependence measures that have
been shown to be potentially affected by the different dy-
namical properties of the two series �8,31,32�.

The bivariate surrogate data here generated provide a
threshold for significance for cross prediction and mixed pre-
diction, and obviously not for self-prediction. As a conse-
quence, the significance of S2 and S3 is always the same
when evaluated by these bivariate surrogates. Nevertheless,
in this study we considered as not significant even the cou-
pling corresponding to S3�0 �and thus S3N�0�, as in the
presence of stationary time series negative predictability im-
provements cannot be interpreted in ways other than a sig-
nature of independence.

III. NUMERICAL EXAMPLES

In this section we report the application of mutual nonlin-
ear prediction to known simulated signals, performed to test
its ability in evaluating coupling and causality during differ-
ent conditions of interaction. In order to discuss the proper-
ties of each predictor in terms of already existing results, we
studied the Henon system, which was taken into consider-
ation by several previous reports dealing with mutual nonlin-
ear prediction of time series �9,11,12,15�. Moreover, short
realizations of the dynamics �N=500 points� were considered
to match requirements of the practical application on real
physiological data, which are often limited to few hundred
points to fulfill stationarity constraints. These choices leave
to future applications the evaluation of approaches based on
mutual nonlinear prediction on high-dimensional continuous
systems such as those including time delays, as well as the
study of the effects of nonstationarities over the assessment
of coupling strength and directionality.

We considered different types of interaction �uncoupling,
unidirectional coupling, bidirectional coupling�, as well as
different coupling strengths for the coupled systems. Further-
more, the analysis was repeated for Henon systems with
identical and nonidentical parameters, and the robustness of
the various measures against noise corruption of the dynam-
ics was also studied. From each pair of Henon systems, time
series lasting 500 points were taken after discarding the sys-
tems’ initial transient responses. The initial conditions were
always set at identical values for the two systems. The em-
bedding time lag was set to l=1, and k=30 neighbors were
used for local linear prediction. No significant changes were
observed for other values of k.

A. Unidirectionally coupled systems

As a first example we considered two unidirectionally
coupled Henon maps �9�, defined by the equations

xi+1 = 1.4 − xi
2 + 0.3ui, ui+1 = xi, �10a�

yi+1 = 1.4 − �cxi + �1 − c�yi�yi + bvi, vi+1 = yi, �10b�

where the constant b was set to 0.3 to have identical systems
and to 0.1 to have nonidentical systems. The constant c
modulates the strength of the coupling from x to y and was
varied from 0.1 to 1, step 0.1. The case c=0 corresponds to
uncoupled dynamics and will be discussed separately in Sec.
III C. An example of BPMs obtained for unidirectionally
coupled maps with b=0.1 and c=0.6 is reported in Fig. 1�a�.
The values of the coupling indices in this example are S1x
=0.739, S1y =0.662; S2x=0.999, S2y =0.998; S3x=−0.0004,
S3y =0.082; S3Nx=−2.173, and S3Ny =0.982.

The directional measures of coupling �Eqs. �6�–�9�� cal-
culated as a function of c for identical systems and noniden-
tical systems are reported in Figs. 2 and 3, respectively. The
corresponding nondirectional coupling measures can be eas-
ily derived by taking the higher of the two directional values
for a given value of c. While the index S1 shows a clear
tendency to increase with the coupling strength �Figs. 2�a�,
2�e�, 3�a�, and 3�e��, all other measures seem not able to
reflect the imposed degree of unidirectional coupling. These
results suggest that the approach based on cross prediction is
capable of evaluating the strength of the coupling in bivariate
time series. On the contrary, the responsiveness to the cou-
pling strength of interdependence measures yielded by
mixed-prediction and predictability-improvement approaches
may be obscured by the quote of self-predictability due to
the inclusion of past points of the investigated series into the
prediction scheme.

In the case of identical systems, both S1x and S1y are al-
ways significantly larger than the surrogate threshold for all
values of c �Fig. 2�a��. Moreover, the maximal cross predict-
ability is generally higher in the direction from y to x than
vice versa �S1x�S1y�. Although a bit counterintuitive with
respect to the imposed unidirectional interaction from x to y,
this result is in agreement with those of Ref. �9�, also found
in Ref. �17� using measures of nonlinear interdependence
based on observables different from mutual prediction. S1x
and S1y take on exactly the same values for c=0.5, when
generalized synchronization sets in, and for c�0.7, when the
systems fall in a region of identical synchronization �17�.
This is not surprising, since during synchronization regimes
the mapping of closeness in the state space is reciprocal, so
that mutual prediction returns identical predictability degrees
in the two directions. Analogous results were observed with
S2 �Fig. 2�b��, even though the result is less evident from the
index values due to the high degree of self-predictability
captured by mixed prediction that masks the information
about coupling. On the contrary, S3 and S3N exhibit a differ-
ent behavior �Figs. 2�c� and 2�d��. S3x and S3Nx are never
significant, due to the negative predictability improvement
always measured for the series x. When synchronization is
not occurring �c�0.7, c�0.5�, S3y and S3Ny are always sta-
tistically significant, thus detecting the unidirectional cou-
pling and the presence of Granger causality from x to y.
When synchronization sets in, both S3x and S3y, as well as
S3Nx and S3Ny, are not significant, indicating that the inclu-
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sion of the second series does not provide additional infor-
mation to the prediction of the first one. This result is ex-
pected, since for fully synchronized systems driver and
response are indistinguishable from each other �12�, so that
the predictability improvement cannot reflect the actual cou-
pling strength and Granger causality cannot be assessed.

The above discussion holds similarly for nonidentical sys-
tems �Figs. 3�a�–3�d��, with the exception that here full syn-

chronization between the systems is not achievable and thus
asymmetry in the interdependence measures is expected for
all coupling strengths. In fact, S1, S2, S3, and S3N are never
the same in the two directions as happened during general-
ized or identical synchronization for identical systems.
Again, the directional coupling evaluated by cross prediction
is larger from y to x than in the opposite direction �S1x
�S1y, Fig. 3�a��, but this information is lost for high cou-
pling strengths �c�0.7�. Mixed prediction is no more able to
elicit the direction of coupling, as we found S2x�S2y or
S2y �S2x depending on the coupling degree. Predictability
improvement and normalized predictability improvement are
able to elicit causality from x to y, as we observe S3y �S3x
and S3Ny �S3Nx for all values of c �Figs. 3�c� and 3�d��. This
suggests that, even if the driver has higher dimension than
the driven system, measures based on the predictability im-
provement are able to set the correct direction of interaction

FIG. 2. Measures of synchronization obtained by cross predic-
tion �S1�, mixed prediction �S2�, and predictability improvement �S3

and S3N�, plotted as a function of the coupling strength c imposed in
unidirectionally coupled identical Henon maps �Eq. �10�, b=0.3�.
Results in panels �a�, �b�, �c�, and �d� are for the noise-free realiza-
tions and in panels �e�, �f�, �g�, and �h� for the realizations with
inclusion of system and measurement noise. Interactions measured
in the direction from x to y and from y to x are represented by
circles and squares, respectively. Solid symbols indicate synchroni-
zation values not statistically different from zero according to sur-
rogate data analysis.

FIG. 3. Same as Fig. 2 for unidirectionally coupled nonidentical
Henon maps �Eq. �10�, b=0.1�.
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�from x to y in this case�. On the contrary, measures based on
cross prediction �9,10� or closeness in the state space �17,31�
tend to favor the system with more excited degrees of free-
dom �the system X in this case� �6,7,17�. As happened for
identical systems, S1 and S2 are always larger than their cor-
responding threshold for significance in both directions and
for all values of c, while S3 and S3N are always significant
from x to y, thus detecting Granger causality, and never sig-
nificant from y to x, thus detecting the unidirectional nature
of the coupling.

We also studied how the three measures changed with the
inclusion of both system noise �with standard deviation
=0.005� and measurement noise �with standard deviation
=0.2�. Results for identical and nonidentical systems are
shown in Figs. 2�e�–2�h� and in Figs. 3�e�–3�h�, respectively.
In general, it is of course expected that all predictions be-
come worse in presence of noise. In fact, S1 and S2 decrease
as a consequence of the lower correlation between original
and predicted data yielded by cross and mixed predictions.
For the same reason, these two indices may become nonsig-
nificant in the presence of low coupling strengths �e.g., see
Figs. 2�e�, 2�f�, 3�e�, and 3�f��. As to S3, it shows a general
increase with respect to the noise-free condition �Figs. 2�g�
and 3�g��. This effect is explained by considering that noise
inclusion worsens also the self-prediction of the time series,
which was very good �i.e., associated with very high �2 val-
ues� for the clean maps. Due to index normalization, the
increase of the predictability improvement in the presence of
noise is not observed for S3N. Both predictability improve-
ment indices are still able to detect the directional relation-
ship �S3y �S3x, S3Ny �S3Nx, Figs. 2�g�, 2�h�, 3�g�, and 3�h��,
with the only drawback that noise can make the index insig-
nificant in case of low coupling �e.g., with c=0.1� or signifi-
cant in both directions in the case of high coupling �e.g., with
c�0.8�. On the contrary, the interpretation of the directional
information given by S1 and S2 is controversial even during
noise corruption. In fact, the asymmetry of S1 and S2 was
reversed after noise addition in some cases �e.g., we observe
S2x�S2y in Fig. 2�b� and S2y �S2x in Fig. 2�f� or S1x�S1y in
Fig. 3�a� and S1y �S1x in Fig. 3�e��, or resulted dependent on
the coupling strength in some other cases �e.g., see Figs. 2�e�
and 3�f��.

It is worth noting that the normalization procedure applied
to the predictability improvement affected the absolute value,
but did not alter the behavior of the index at varying the
imposed degree of coupling. Indeed, in all conditions the
trends of S3Nx and SN3y �Figs. 2�d�, 2�h�, 3�d�, and 3�h��
mimic those of S3x and S3y �Figs. 2�c�, 2�g�, 3�c�, and 3�g��.
This result is explained by the fact that, in the simulations
considered, the self-predictability of the series was not sub-
stantially modified at varying the coupling strength.

B. Bidirectionally coupled systems

In the second example, we study two bidirectionally
coupled Henon maps �11�, with the equations

xi = 1.4 − xi−1
2 + 0.3xi−2 + c2�xi−1

2 − yi−1
2 � ,

yi = 1.4 − yi−1
2 + byi−2 + c1�yi−1

2 − xi−1
2 � , �11�

where the constants c1 and c2 determine the strength of cou-
pling in the directions from x to y and from y to x, respec-
tively. Again, b was set to 0.3 to have identical systems and
to 0.1 to have nonidentical systems. In the simulations, c1
was varied from 0.05 to 0.3, while keeping constant c2
=0.05. An example of the BPMs obtained setting c1=0.2 and
c2=0.05 �with b=0.1� is shown in Fig. 1�b�. The values of
the coupling indices in this example are S1x=0.897, S1y
=0.911; S2x=0.9995, S2y =0.9990; S3x=0.0005, S3y =0.0118;
and S3Nx=0.512, S3Ny =0.923. The complete results are re-
ported in Figs. 4 and 5. For c1=c2=0.05 we have balanced
bidirectional coupling, while in all other cases there is bidi-

FIG. 4. Same as Fig. 2 for bidirectionally coupled identical
Henon maps �Eq. �11�, b=0.3�. Plots represent synchronization val-
ues as a function of the coupling strength from x to y �c1�, with
coupling strength from y to x given by c2=0.05.
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rectional coupling with prevalence in the direction from x to
y. The case c1=0.3 for identical systems is particular as it
leads to identical synchronization �12�, and thus results re-
produce those obtained with c=1 in Eq. �10�.

As with the unidirectional coupling condition, even in bi-
directional coupling cross prediction reflects the degree of
coupling �S1 increases with c1�, while mixed prediction �in-
dex S2� and predictability improvement �indices S3 and S3N�
do not exhibit clear trends related to the coupling strength.
Cross prediction is also able to detect all coupling condi-
tions, as S1 is always significant in both identical and non-
identical systems, even in the presence of noise. The same
results hold for mixed prediction, even though S2 seems less
robust against noise corruption as in some cases �Figs. 4�f�
and 5�f�� either S2x or S2y are insignificant. On the other
hand, S1 and S2 seem not able to distinguish bidirectional
from unidirectional coupling, since their behavior did not

substantially change for bidirectionally coupled compared to
unidirectionally coupled maps. In addition, no reliable infor-
mation about coupling direction can be inferred from S1 and
S2. For instance, in most cases we observe S1y �S1x �Figs.
4�a�, 4�e�, 5�a�, and 5�e��, which is an opposite result of that
found in the previous examples with unidirectional interac-
tion, even though the largest coupling is still set in the direc-
tion from x to y. Moreover, asymmetries in coupling of S1
and S2 exhibit a behavior dependent on the coupling strength.

The interdependence measures based on predictability im-
provement result less sensitive to low coupling strengths, as
shown, for instance, with c1=c2=0.05, where both S3x and
S3y, as well as S3Nx and S3Ny, are not significant �Figs. 4�c�,
4�d�, 4�g�, 4�h�, 5�g�, and 5�h��. Nevertheless, predictability
improvement seems suitable to elicit the direction of interac-
tion also in bidirectional coupling, as we observe S3y �S3x
and S3Ny �S3Nx in all conditions. Another interesting finding
is that in nonidentical systems S3 and S3N are significant for
both time series �Figs. 5�c� and 5�d��, thus assessing Granger
causality in both directions and distinguishing, in terms of
predictability improvement, bidirectional coupling from the
unidirectional coupling where only S3x and S3Nx were signifi-
cant �Figs. 3�c� and 3�d��. A similar behavior is observed in
identical systems �Fig. 4�c��, except for the fact that S3x and
S3Nx are sometimes negative. Noise has the effect of masking
these results, as the lower coupling from y to x results often
negative �Figs. 4�g�, 4�h�, 5�g�, and 5�h��. Again, utilization
of the normalized predictability improvement �indices S3Nx
and S3Ny, Figs. 4�d�, 4�h�, 5�d�, and 5�h�� in place of the
non-normalized indices �S3x and S3y� leads to similar results
due to the fact that the self-predictability of bidirectionally
coupled maps is substantially unmodified at varying the cou-
pling strength.

C. Uncoupled systems

In the previous simulations we have addressed the ability
of the four coupling measures to characterize the interdepen-
dence between coupled systems with different features.
However, it is important also to evaluate whether such mea-
sures are able to detect correctly the absence of interaction
between two dynamical systems. To this end, we eventually
consider the case of two uncoupled Henon maps. This situ-
ation was reproduced simply by forcing c=0 in Eq. �10�.
Results for the case of uncoupled nonidentical systems
without noise contamination are shown as BPMs in Fig. 1�c�.
The corresponding coupling indices for this example are
S1x=0.031, S1y =0.030 �see the dark colors in the first column
of the two BPMs in Fig. 1�c��; S2x=0.996, S2y =0.999;
S3x=−0.0041, S3y =−0.0001; and S3Nx=−20.5, S3Ny =−9.

Uncoupling indices are reported at c=0 in Figs. 2 and 3.
The case of identical systems without noise is misleading,
since setting b=0.3 and c=0 in Eq. �10� leads to perfectly
identical x and y series, which are obviously seen as per-
fectly coupled rather than uncoupled, so that the indexes
with c=0 in Figs. 2�a�–2�d� are exactly the same as with c
=1. The inclusion of noise �specifically the system noise�
made the two dynamics fully uncoupled, and this condition
was detected by all the three approaches as S1, S2, and S3 �or

FIG. 5. Same as Fig. 4 for bidirectionally coupled nonidentical
Henon maps �Eq. �11�, b=0.1�.
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S3N� did not exceed the surrogate threshold for significance
�Figs. 2�e�–2�h��. With b=0.3 and c=0 in Eq. �10� we have
nonidentical uncoupled systems generating uncoupled series
even in the noise free case �Figs. 3�a�–3�d��. In this condition
S2, S3, and S3N are not statistically significant, while S1x and
S1y are small, but surprisingly larger than the threshold for
significance, suggesting that cross prediction is more in-
clined to generate false positives in coupling detection. In the
noise condition, all measures were below the zero-level
threshold �Fig. 3�e�–3�h��.

IV. APPLICATION TO CARDIOVASCULAR DATA

In order to demonstrate the usefulness of mutual nonlinear
prediction in a physiological field where commonly only
short time series �few hundred samples� are available due to
stationarity constraints, we describe the application to the
study of the interactions between heart rate and arterial blood
pressure measured from humans. These two variables are
known to be mutually interacting, as a result of the feedback
baroreflex neural regulation, whereby changes in arterial
pressure are sensed by the baroreceptors triggering modifi-
cations of the heart rate via sympathetic and parasympathetic
neural circuits �33�, and the feedforward circulatory mechan-
ics, whereby variations of the heart rate induce mechanical
variations in the arterial pressure according to Starling law
and Windkessel effects �34�. The interdependence between
heart rate and arterial pressure variability is studied in
healthy subjects during a normal physiological condition
�i.e., the resting supine position� and in a condition that is
expected to alter the balance between sympathetic and para-
sympathetic neural regulations �i.e., the upright position after
head up tilt� �33�. The two time series under analysis are the
heart period �HP� variability, measured as the sequence of
the time intervals occurring between consecutive heartbeats,
and the systolic pressure �SP� variability, obtained taking the
consecutive local maxima of the arterial pressure signal

within each detected heart period. We consider 15 young
healthy subjects, in whom stationary segments of 300 points
are synchronously selected for the HP and SP series in both
the supine and upright positions. Details about the study
population and the acquisition protocol can be found in Ref.
�18�. In all subjects, the analysis is carried out with embed-
ding lag l=1 and using k=30 neighbors for local linear pre-
diction. The coupling measures of Eqs. �6�–�8� are taken af-
ter varying the parameters m and n between 1 and 12.

After normalization, the selected HP and SP variability
series are denoted with hp and sp, respectively. Figure 6
reports an example of the HP and SP series for a typical
subject in the supine and upright positions, along with the
corresponding BPMs. In the supine position, the predictabil-
ity measured by the BPM is lower for the HP series �dark
colors in BPMhp� than for the SP series �light colors in
BPMsp, Fig. 6�a��, while it increases after tilt so that both
series are highly predictable in the upright position �Fig.
6�b�, lighter colors in the two BPMs�. These behaviors are
reproduced also for the self-predictability of the two series
�PS function, first row of each BPM�. The maximum cross
predictability �i.e., the maximum of the PC function, first
column of each BPM� is statistically significant in the supine
position for both series �S1sp=0.089, S1hp=0.105� and in-
creases in the upright position �S1sp=0.186, S1hp=0.173�. The
maximum mixed predictability �i.e., the maximum of the PM
function� is higher for SP �S2sp=0.923� than for HP �S2hp
=0.537� at rest and is high for both series after tilt �S2sp
=0.906, S2hp=0.827�. The predictability improvement is sta-
tistically significant according to the surrogate data test, with
coupling values S3sp=0.018, S3hp=0.039 at rest and S3sp
=0.018, S3hp=0.025 after tilt. The normalized predictability
improvement was higher for the SP series �S3Nsp=0.192�
than for the HP series �S3Nhp=0.079� at rest and was more
balanced �S3Nsp=0.162, S3Nhp=0.125� after tilt.

All these results are common for the considered popula-
tion and are indeed confirmed by the statistical analysis per-
formed for the 15 subjects. Figure 7 depicts the results ob-

FIG. 6. �Color online� Time series of the heart period �HP� and the systolic pressure �SP� for a typical subject, along with the
corresponding bivariate predictability maps �BPMhp and BPMsp, respectively� calculated by mutual nonlinear prediction �a� in the supine
position and �b� in the upright position.
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tained calculating the nondirectional coupling indices on
bivariate cardiovascular variability series. All indices indi-
cated the presence of a significant interdependence between
HP and SP series in both body positions, as S1, S2, S3, and
S3N were always larger than the surrogate threshold for sig-
nificance in at least one of the two causal directions. The
statistically significant increase of the index S1 moving from
the supine to the upright position seen in Fig. 7 is well in-
terpretable on the basis of the known cardiovascular physi-
ology. Indeed, it reflects the increased strength of interaction
between the two cardiovascular variables after head-up tilt,
as an effect of the activation of the sympathetic nervous sys-
tem that enhances primarily the feedback baroreflex regula-
tion from SP to HP and, consequently, the feedforward influ-
ence of HP on SP �18,33�. On the contrary, the interpretation
of other nondirectional coupling indices is less intuitive.
Mixed prediction yields a larger predictability than cross pre-
diction �S2 is higher than S1 in Fig. 7�, as a consequence of
the quote of self-predictability captured by using mixed
states. This aspect has also the detrimental effect of masking
modifications of the corresponding interdependence measure
with varying physiological conditions: the increase of S2
moving from the supine to the upright position is indeed
blunted and is not statistically significant. Even the interpre-
tation of the significant decrease of the predictability im-
provement from rest to tilt may be misleading, since the
absolute values of the index S3 are directly influenced by the
self-predictability of the time series under analysis �see Eq.
�6��. In this case, the self-predictability of the cardiovascular
series improves significantly with the tilt transition, as we
obtained maxm�PSsp�m��=0.81 at rest and maxm�PSsp�m��
=0.87 after tilt for the SP and maxn�PShp�n��=0.59 at rest
and maxn�PShp�n��=0.85 after tilt for the HP. After normal-
ization �index S3N�, no significant modifications of the pre-
dictability improvement are indeed observed. These observa-
tions confirm on experimental data that cross prediction is
more suitable than mixed prediction and predictability im-
provement for quantifying the degree of the interaction in
bivariate time series and substantiate the formulation of pre-

viously proposed approaches estimating the coupling
strength without considering past self-influences of the ana-
lyzed time series �3,28�.

Results of the directional coupling analysis applied to SP
and HP variability are summarized in Fig. 8. Cross prediction
confirms for both series the increase of coupling consequent
to tilt, while S1sp and S1hp were substantially balanced in both
body positions �Fig. 8�a��. Mixed prediction indicates an un-
balancing in the coupling in supine subjects �Fig. 8�b��.
However, we suggest a very cautious interpretation of these
results, since simulations have shown that cross and mixed
predictions can hardly elicit the direction of coupling in short
bivariate time series. The predictability improvement was al-
ways significant, as S3sp and S3hp were positive and larger
than the surrogate threshold for significance �except for S3hp
in one subject at rest and S3sp in one subject after tilt�. This
result indicates the bidirectional nature of the interaction be-
tween HP and SP in both body positions, in accordance with
the expected physiological behavior �33,34�. The values of
S3sp and S3hp indicate a tendency to decrease of the predict-
ability improvement from the supine to the upright position
�Fig. 8�c��. However, as above discussed, in this application
the index is biased by the variable self-predictability of the
investigated time series. Utilization of the normalized pre-
dictability improvement, which prevents the predictability of
the single time series from affecting the directionality mea-
sure, reveals very interesting results �Fig. 8�d��. First, we
observe a higher predictability improvement from HP to SP
�index S3Nsp� than in the opposite direction �index S3Nhp� in
the supine position. This result supports, from the different
point of view provided by mutual nonlinear prediction, the
notion that nonbaroreflex or nonautonomic mechanisms op-
erating in the direction from HP to SP through the circulatory
mechanics �35� play a major role in the cardiovascular regu-
lation of supine humans �18,36�. Nevertheless, the assump-
tion of the upright position seems to produce an enhance-
ment of the interactions along the baroreflex pathway from
SP to HP, as documented by the significant increase of S3Nhp
moving from rest to tilt conditions. This increase, leading to
a balanced SP-HP regulation in the upright position, is com-
patible with the activation of the sympathetic branch of the
autonomic nervous system induced by tilt �33�.

V. CONCLUSIONS

In this work we compared both on simulations and on real
data the performance of different previously proposed mu-
tual nonlinear prediction approaches �9,11,12� with regard to
their ability to evaluate coupling strength and causality in
bivariate time series measured from coupled systems. Our
results support the feasibility of mutual nonlinear prediction
for detecting different coupling conditions even in short �few
hundred samples� realizations of the observed dynamics, but
suggest that different prediction schemes have different abili-
ties in detecting coupling strength and directionality of the
interactions.

We found that mutual nonlinear prediction performed
through cross prediction �9� is suitable to detect the interac-
tion between short coupled series and to quantify its strength,

FIG. 7. Nondirectional coupling values between heart period
and systolic pressure measured by cross prediction �S1�, mixed pre-
diction �S2�, predictability improvement �S3�, and normalized pre-
dictability improvement �S3N� in the supine position �white� and the
upright position �black�, represented as mean+standard deviation
over the 15 considered subjects. The probability that two sets of S
values are drawn from the same population, according to the stu-
dent t-test for paired data: ���� p�0.001 and ��� p�0.01 supine vs
upright.
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as the corresponding interdependence measure was related to
the coupling degree imposed in both unidirectionally and
bidirectionally coupled Henon maps and reflected the ex-
pected coupling increase moving from the supine to the up-

right position in the study of heart-rate–arterial-pressure in-
teractions. However, cross prediction seems unable to
distinguish unidirectional from bidirectional simulated inter-
actions. Moreover, it turns out to be unreliable to infer the
direction of coupling from the asymmetrical values of the
coupling measure, as our simulations clearly show that the
observed asymmetries were not stable at varying the dynami-
cal properties of the systems, the imposed coupling degree,
and the noise conditions. This observation agrees with pre-
vious studies arguing that it is very difficult to obtain non-
trivial directional information from asymmetries observed
from nonlinear interdependence measures based on quantify-
ing state space correspondences in coupled systems �17,20�.

The approach based on mixed prediction �11� provided
behaviors that resemble those of cross prediction, with the
drawback that results were more difficult to interpret as a
consequence of the presence of a quote of self-predictability
affecting the value of the coupling measure. This aspect,
which is a direct consequence of the utilization of mixed
patterns including points of both series for performing mu-
tual prediction, led to the presence of high coupling values
even for weakly coupled signals and, in the real data appli-
cation, to a more problematic detection of known physiologi-
cal behaviors, such as the increase of heart-rate–arterial-
pressure coupling expected with the transition from supine to
upright. Nevertheless, mixed prediction used together with
the proposed surrogate data approach was able to reveal the
absence of coupling in all the simulations where independent
signals were generated.

When interdependence was assessed evaluating the im-
provement in predictability given by mixed prediction with
respect to self-prediction �12�, simulations evidenced a
weaker capability to detect conditions of low coupling.
Moreover, the index did not reflect the actual coupling
strength, as it tends to decrease when the interacting systems
approached the synchronized state. Nevertheless, the index
resulted as the most appropriate to distinguish unidirectional
from bidirectional coupling and to infer the direction of cou-
pling based on asymmetries emerging from its calculation
along the two causal directions. Indeed, simulations showed
that a larger predictability improvement was always noticed
in the causal direction on which the higher coupling was
imposed, and the reported asymmetry was preserved at vary-
ing the coupling strength and was even enhanced in presence
of noise. Finally, we observe that in practical applications
where different conditions are compared, measures of pre-
dictability improvement normalized to the unpredictability of
the observed time series �14� should be used. This correction
allows us to release the coupling measure from accounting
for the intrinsic predictability of the single time series, which
can be different for the two considered series and can vary
with the experimental conditions. Using normalized predict-
ability improvements for the causal analysis of cardiovascu-
lar interactions in healthy humans, we showed indeed �i� an
asymmetrical relationship in the resting supine position that
was related to the prevalence of the mechanical effects of
heart rate on arterial pressure over the neural modulation
from arterial pressure to heart rate and �ii� an increase in the
directional influence of arterial pressure on heart rate after
head-up tilt, which was ascribed to the intensified stimulus
on the baroreceptors in the upright position.

FIG. 8. Directional coupling values measured by cross predic-
tion ��a� S1�, mixed prediction ��b� S2� predictability improvement
��c� S3�, and normalized predictability improvement ��d� S3N� for
the systolic pressure �sp, white� and the heart period �hp, black�
variability series in the supine and the upright positions, represented
as mean+standard deviation over the 15 considered subjects. The
probability that two sets of S values are drawn from the same popu-
lation, according to the student t-test for paired data: ��� p�0.05
supine vs upright and �#� p�0.05 Ssp vs Shp.
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